El presente trabajo es una compilación de la investigación producida en el campo de modelado de propagación de ondas. Contiene análisis de estabilidad, convergencia, dispersión y disipación de discretizaciones espaciales, temporales y espacio-temporales. La discretización espacial se hace usando elementos finitos estabilizados denotados por los acrónimos ASGS y OSS. La discretización temporal se hace usando métodos de diferencias finitas incluyendo backward Euler (BE), backward differentiation formula de 2do orden (BDF2) y Crank-Nicolson (CN). En primer lugar, proponemos dos métodos de elementos finitos estabilizados para diferentes marcos funcionales de la ecuación de ondas en forma mixta. Estos métodos de elementos finitos estabilizados son estables para cualquier par de espacios de interpolación de las incógnitas. Las formas variacionales que corresponden a los diferentes marcos funcionales son tratadas de manera unificada a través de la introducción de longitudes de escalado relacionadas a las incógnitas. Estabilidad y convergencia son analizadas junto con experimentos numéricos. Se muestra como modificando las longitudes de escalado se puede reproducir a nivel discreto los diferentes marcos funcionales del problema continuo y como influencian la estabilidad y precisión de los métodos resultantes. Luego, desarrollamos aproximaciones numéricas de la ecuación de ondas en forma mixta complementadas con condiciones de frontera de no-reflexión (NRBCs) de tipo Sommerfeld sobre fronteras artificiales para dominios truncados. Análisis de estabilidad y convergencia de estas formulaciones estabilizadas incluyendo la NRBC son presentados. Adicionalmente, pruebas de convergencia son llevadas a cabo para varias interpolaciones polinomiales, métodos de estabilización y formas variacionales. Finalmente, varios problemas de referencia son resueltos para determinar la precisión de estos métodos en 2D y 3D. Después, analizamos esquemas de discretización temporal para la ecuación de ondas en forma mixta. El problema es discretizado en el espacio utilizando elementos finitos estabilizados. Por un lado, análisis de convergencia y estabilidad de los esquemas numéricos totalmente discretos son presentados. Por otro lado, usamos técnicas de Fourier (también conocidas como análisis de von Neumann) con el fin de analizar estabilidad, dispersión y disipación. Adicionalmente, pruebas numéricas de convergencia son presentadas para varios esquemas de integración temporal, interpolaciones polinomiales (para la discretización espacial), métodos de estabilización y formas variacionales. Finalmente, un ejemplo 1D es resuelto para analizar el comportamiento de los diferentes esquemas numéricos considerados. Más tarde, presentamos varios ejemplos de aplicación y comparamos los resultados numéricos de los diferentes algoritmos. Por ejemplo estabilización ASGS/OSS y esquemas de integración temporal BD/BDF2/CN. Adicionalmente, se compara los resultados numéricos con resultados experimentales en algunos casos. Por último, las conclusiones son presentadas incluyendo los logros obtenidos en esta investigación y el trabajo futuro.


URL Thesis