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Homework 4: Navier-Stokes equations and Boundary Layer 
Problem 1)  

Part a)  

The stream functions can be expressed in Cartesian coordinates: 

ψ = Urଶsin(2θ) = U(xଶ + yଶ)sin ቌ2arcsin ቆ
y

ඥxଶ + yଶ
ቇቍ = 2

U(xଶ + yଶ)y
xଶ + yଶ ඥxଶ + yଶ − yଶ = 2Uxy ( 1) 

The velocity field is: 

u =
∂ψ
∂y

= 2Ux ( 2) 

 

v = −
∂ψ
∂x

= −2Uy ( 3) 

This velocity field satisfies the boundary conditions for the velocity: 

 Wall: At y=0 there is no normal velocity to the wall → v(x, y = 0) = 0 

 Stagnation point: At x=0,y=0 the velocity is 0 → ൜u(x = 0, y = 0) = 0
v(x = 0, y = 0) = 0 

Moreover: 

 For y > 0 → ൜ v < 0
As y → 0, v → 0 

 For x > 0 → ቄ u > 0
As x → 0, u → 0 

 For x < 0 → ቄ u < 0
As x → 0, u → 0 

 At x=0 there is a symmetry axis. 

The pressure field can be obtained using Bernoulli’s equation. Since the fluid is assumed to be 
inviscid and incompressible, and the velocity field obtained is irrotational, Bernoulli’s 
equation is valid along any line.  

For pressure distribution, Bernoulli equation is applied between stagnation point and an 
arbitrary point in the flow field: 

1
2

ቀඥu(x, y)ଶ + v(x, y)ଶቁ
ଶ

+
p(x, y)

ρ
=

p

ρ
 ( 4) 

Substituting the expressions for the velocity: 

p(x, y) = p − 2ρUଶ(xଶ + yଶ) 
 ( 5) 
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Part b)  

The Navier-Stokes equations are satisfied: 

 Continuity equation: 
ܝ
ܠ

+
ܞ
ܡ

= 2U − 2U =  ( 6) 

 x-momentum: 

ૉ ൬ܝ
ܝ
ܠ

+ ܞ
ܝ
ܡ൰ = −

ܘ
ܠ

+ ૄસ(7 ) ܝ 

ρ ൬u
∂u
∂x

+ v
∂u
∂y൰ = 4ρUଶx 

−
∂p
∂x

+ μ∇ଶu = 4ρUଶx 

 y-momentum: 

ૉ ൬ܝ
ܞ
ܠ

+ ܞ
ܞ
ܡ൰ = −

ܘ
ܡ

+ ૄસ(8 ) ܞ 

ρ ൬u
∂v
∂x

+ v
∂v
∂y൰ = 4ρUଶy 

−
∂p
∂y

+ μ∇ଶv = 4ρUଶy 

In the Navier-Stokes equations, the boundary condition at the wall is a non-slip condition: 

൜u(x, y = 0) = 0
v(x, y = 0) = 0 

Using the velocity-field obtained in a), the non-slip boundary condition is only satisfied at the 
stagnation point: 

൜u(x, y = 0) = 2Ux
v(x, y = 0) = 0  

Part c)  

Horizontal velocity for the viscous problem is as follow 

u = 2Uxf ᇱ(y) ( 9) 
Using continuity: 

∂u
∂x

+
∂v
∂y

= 2Uf ᇱ(y) +
∂v
∂y

= 0 →
∂v
∂y

= −2Uf ᇱ(y) 

Integrating: 

v = −2Uf(y) + C 
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When 0,0  Cx , hence without any loss of generality we can write as follow, 

v = −2Uf(y) ( 10) 
The function f(y) must be chosen so that the non-slip boundary condition at the wall is 
satisfied and the irrotational flow obtained in a) is recovered for y → ∞: 

 At y=0: 

൜u(x, y = 0) = 2Uxf ᇱ(0) = 0
v(x, y = 0) = −2Uf(0) = 0 → ൜f ᇱ(0) = 0

f(0) = 0  

 
 At y → ∞: 

൜ u(x, y → ∞) = 2Uxf ᇱ(y → ∞ ) = 2Ux
v(x, y → ∞) = −2Uf(y → ∞) = −2Uy → ൜f ᇱ(y → ∞) = 1

f(y → ∞) = y  

Part d)  

Momentum equation along y axis ( 8) can be used to obtain an expression for the pressure: 

ρ ൬u
∂v
∂x

+ v
∂v
∂y൰ = 4ρUଶf(y)f ᇱ(y) ( 11) 

 

μ∇ଶv = μ ቆ
∂ଶv
∂xଶ +

∂ଶv
∂yଶቇ = −2μUf ᇱᇱ(y) ( 12) 

Using ( 8), ( 11) and ( 12): 

∂p
∂y

= −2U൫μf ᇱᇱ(y) + 2ρUf(y)f ᇱ(y)൯ ( 13) 

Integrating ( 13): 

p(x, y) = p + p(x) − 2Uμf ᇱ(y) − 2ρUଶ൫f(y)൯ଶ
 ( 14) 

For y → ∞, the pressure distribution obtained for the inviscid problem ( 5) must be recovered: 

p − 2ρUଶ(xଶ + yଶ) = p + p(x) − 2Uμf ᇱ(y → ∞) − 2ρUଶ൫f(y → ∞)൯ଶ
 ( 15) 

For y → ∞, ൜ f(y) = y
f ᇱ(y) = 1 

So: 

p(x) = 2Uμ − 2ρUଶxଶ ( 16) 

Adding ( 16) in ( 14): 

p(x, y) = p + 2Uμ൫1 − f ᇱ(y)൯ − 2ρUଶ ቂxଶ + ൫f(y)൯ଶቃ ( 17) 
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Part e)  

Differentiating equation ( 17) with respect to x, we get: 

߲
ݔ߲

= −4ρUଶ(18 ) ݔ 

Substituting ( 18) and the expressions of  ݑ and ݒ in the x-momentum equation ( 7) we get the 
following, 

4ܷଶߩݔ ቀ൫݂ᇱ(ݕ)൯ଶ − ቁ(ݕ)′′݂(ݕ)݂ = 4ρUଶݔ +  (19 ) (ݕ)′′′݂ߤݔ2ܷ
Thus: 

൫݂ᇱ(ݕ)൯ଶ − (ݕ)′′݂(ݕ)݂ = 1 +
ߤ

ߩ2ܷ
 (20 ) (ݕ)′′′݂

The boundary conditions for f were stated in c). In order to be able to solve the ODE: 

 At y=0: 

൜f ᇱ(0) = 0
f(0) = 0  

 At y → ∞: 

f ᇱ(y → ∞) = 1 
Equation ( 20) is a nonlinear third order ordinary differential equation and can be 
conveniently solved numerically to obtain the expression for f(y) using the boundary 
conditions stated before. In post processing, f(y) can be used to estimate the velocity field and 
other parameters of interest such as shear strain  , drag force FD etc. 
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2)  

The Karman momentum integral equation is: 

݀
ݔ݀

(ܷଶߠ) + ܷ∗ߜ
ܷ݀
ݔ݀

=
߬

ߩ
  ( 21) 

Where ߠ is the momentum thickness: 

ߠ = න
ݑ
ܷ

ቀ1 −
ݑ
ܷ

ቁ ݕ݀
ஶ


  ( 22) 

In a uniform flow over a flat: 

ܷ݀
ݔ݀

= 0  ( 23) 

Using ( 21), ( 22) and ( 23): 

݀
ݔ݀

න ܷ)ݑ − ݕ݀(ݑ
ஶ


=

߬

ߩ
  ( 24) 

We assume a parabolic profile: 

ݑ
ܷ

= ܽ + ܾ
ݕ
ߜ

+ ܿ ቀ
ݕ
ߜ

ቁ
ଶ

  ( 25) 

 

The boundary conditions that must be satisfied are: 

1. At ݕ = 0 → ݑ = 0 
2. At ݕ = ߜ → ݑ = ܷ 
3. At ݕ = ߜ → డ௨

డ௬
= 0 

From condition 1: 

ܽ = 0 

Using condition 2: 
ݑ
ܷ

ݕ) = (ߜ = ܽ + ܾ
ߜ
ߜ

+ ܿ ൬
ߜ
൰ߜ

ଶ

= ܾ + ܿ = 1  

From condition 3: 
ݑ߲
ݕ߲

ฬ
௬ୀఋ

=
ܾܷ
ߜ

+
2ܷܿ

ߜ
= 0 
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Thus: 

൝
ܽ = 0
ܾ = 2

ܿ = −1
 

ݑ
ܷ

(ݕ) = 2
ݕ
ߜ

− ቀ
ݕ
ߜ

ቁ
ଶ

  ( 26) 

Now we can compute: 

 Shear stress ߬ 

߬ = ߤ
ݑ߲
ݕ߲

ฬ
௬ୀ

=
2ܷ
ߜ

 (27 )  ߤ

 Boundary layer thickness ߜ: 

Using ( 24), ( 27) and solving the integral in the left hand side of ( 24): 

ߜ݀ߜ = 15
ߤ

ߩܷ
 (28 ) ݔ݀ 

Integrating ( 28): 

ߜ = ඨ
ݔߤ30

ߩܷ
 ( 29) 

Definning the Reynolds number as: 

ܴ݁ =
ߩݔܷ

ߤ
 ( 30) 

 
ߜ
ݔ

= √30
1

√ܴ݁
≈

5.477
√ܴ݁

 ( 31) 

 Momentum thickness ߠ: 

Using ( 22) and ( 26): 
ߠ
ݔ

≈
0.730
√ܴ݁

 ( 32) 

Comparing the results obtained with the ones obtained for both the Blasius “exact” solution 
and with the ones obtained assuming a cubic velocity profile: 

 Cuadratic function Cubic function Blasius 
ݑ
ܷ

 2
ݕ
ߜ

− ቀ
ݕ
ߜ

ቁ
ଶ
 

3
2

ݕ
ߜ

−
1
2

ቀ
ݕ
ߜ

ቁ
ଷ
  

ߜ
ݔ

 
5.477
√ܴ݁

 
4.64
√ܴ݁

 
5

√ܴ݁
 

ߠ
ݔ

 
0.730
√ܴ݁

 
0.646
√ܴ݁

 
0.664
√ܴ݁
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In order to compare the different solutions, in Fig. 1 ௨


 is plotted vs ߟ = ௬

ට
ഋೣ
ഐೆ

. If we consider 

the Blasius approximation as the “exact” solution, the error made in both the cubic and 
cuadratic approximations can be obtained when comparing with Blasius solution (Fig. 2). As 
can be seen in both figures, the cubic approximation is better than the cuadratic 
approximation.  

Cubic approximation results to be a better approximation than the cuadratic as it incorporates 

the boundary condition 2

2

dy
ud = 0 for y=0. Hence if this condition is applied along with no slip 

boundary condition in x direction momentum equation at y = 0, we retrive our original 

assumption i.e. 0
dx
dp . On the other hand, using quadratic approximation, x direction 

momentum equation at y = 0 gives the following: 

2

2


U
dx
dp 

  

This result goes contrary to our assumption that the pressure is uniform within the domain. 
Therefore, cubic velocity profile is a better approximation of the ‘exact’ Blasius solution. 

 



 

 

 

ݑ
ܷ

 

   

Fig. 1 

 Fig. 2 
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