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1. Abstract

In this report is shown the solution of dynamics problems, stated in the assignment sheet on the CIMNE virtual
center.
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2. Question 1

In the dynamic system of slide 6, let r(t) be a constant force F. What is the effect of F on the
time-dependent displacement u(t) and the natural frequency of vibration of the system?

Figure 2.1: Dynamic system

As in dynamics problems, it has to be considered the Newton’s second law about forces balance F = ma.
Considering u(t) the displacement and the force constant, the Newton’s second law takes the form of:

mü+ ku = F (2.1)

The solution of this non-homogeneous ordinary differential equation will be composed by the general solution
plus the particular one. In order to find the general solution, it has to be considered the free clamped system,
so with F = 0.

mü+ ku = 0 (2.2)

The general solution will be:
u(t) = Asin(ωt+ φ) +Bcos(ωt+ φ) (2.3)

So assuming initial conditions u(t = 0) = 0 and no initial phase (φ = 0), the solution for the force equation is:

u(t) = Bcos(ωt) (2.4)

where A is the amplitude of motion and ω is the natural frequency of vibration (rad/s) and is equal to
√
k/m.

It can be seen from here that F will not affect the natural frequency of vibration ω as it only depends on the
values of k and m.
The particular solution will be computed considering u constant but the force different from 0, so the equation
will lead us to:

kup = F −→ up = F/k (2.5)
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My equation now will be:

u(t) = Bcos(
√
k/mt) + F/k (2.6)

in order to find B, it has to be considered the initial condition and B will be then equal to −F/k. So the final
force equation will be:

u(t) =
F

k

(
1− cos

(
t

√
k

m

))
(2.7)

in which can be appreciated the effect of F in the displacements.
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3. Question 2

A weight whose mass is m is placed at the middle of a uniform axial bar of length L that is
clamped at both ends. The mass of the bar may be neglected. Estimate the natural frequency
of vibration in terms of m, L, E and A. Suggestion: First determine the effective k.
The only displacements that will be permitted will be the one along the negative y-direction as the beam is
clamped in both the extremities and it is a gravity problem: the only force acting is the gravity one, in the
middle of the beam.
Remembering that the natural frequency of vibration is

√
k/m it is needed to find k. Remembering that:

ku = F −→ k = F/u (3.1)

In order to find k, it has to be considered the maximum vertical displacement that will be located in the middle
of the beam where the load is applied. The displacement will be equal to:

u =
mgL3

192EI
(3.2)

in which E is known as is the Young modulus of the beam and the inertia I has to be computed. Choosing a
circular section, the inertia will be equal to:

I = πd4/64 (3.3)

the Area of a circular section is A = πr2 so the inertia, written in function of A, will be:

I = A2/(4π) (3.4)

Plugging 3.4 in 3.2 and then in 3.1 it is found the relation of k and so, plugging it in the expression of the
natural frequency of the system, the following relation is obtained:

ω =

√
48EA2

mL3π
=

4A

L

√
3E

Lπm
(3.5)
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4. Question 3

Use the expression on slide 20 to derive the mass matrix of slide 19.
The expression taken into account is the consistent element mass matrix defined as following:

M =

∫
NTNρdV (4.1)

in which N are defined as:

N1 = 1− x/L
N2 = x/L

(4.2)

and are the shape functions of my element. Considering density and cross section as constants, the consistent
element mass matrix takes the form of:

M = ρA

∫ L

0

NTNdx (4.3)

Solving the system will lead to:

M = ρA

∫ L

0

[
N2

1 N1N2

N1N2 N2
2

]
dx (4.4)

Computing each integral with the shape functions defined in 4.2:∫ L

0

N2
1 dx =

[
x+

x3

3L2
− 2x2

2L

]L
0

=
L

3∫ L

0

N2
2 dx =

[
x3

3L2

]L
0

=
L

3∫ L

0

N1N2dx =

[
− x3

3L2
+
x2

2L

]L
0

=
L

6

(4.5)

Substituting everything in 4.4 it will be recovered the expression asked, in fact:

M = ρA

[
L
3

L
6

L
6

L
3

]
=

[
ρAL
3

ρAL
6

ρAL
6

ρAL
3

]
(4.6)
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5. Question 4

Obtain also the mass matrix of a two-node, linear displacement element with a variable cross-
sectional area that varies from A1 to A2.
The variation of the cross section will depends on x. Hence it can be described in function of x, using the same
shape functions defined in the previous point, 4.2. Describing the area, the following expression yields:

A(x) = A1N1(x) +A2N2(x) (5.1)

Computing as previously done, but considering the linear variation of the cross section:

M = ρ

(
A1

∫ L

0

[
N3

1 N2
1N2

N2
1N2 N2

2N1

]
dx+A2

∫ L

0

[
N2

1N2 N1N
2
2

N1N
2
2 N3

2

]
dx

)
(5.2)

Computing the integrals as before:∫ L

0

N3
1 dx =

[
x+

3x3

3L2
− x4

4L3
− 3x2

2L

]L
0

=
L

4∫ L

0

N3
2 dx =

[
x4

4L3

]L
0

=
L

4∫ L

0

N2
1N2dx =

[
x2

2L
+

x4

4L3
− 2x3

3L2

]L
0

=
L

12∫ L

0

N1N
2
2 dx =

[
x3

3L2
− x4

4L3

]L
0

=
L

12

(5.3)

Hence the consistent element mass matrix will be:

M = ρL

(
A1

[
1
4

1
12

1
12

1
12

]
+A2

[
1
12

1
12

1
12

1
4

])
(5.4)

6



6. Question 5

A uniform two-node bar element is allowed to move in a 3D space. The nodes have only
translational d.o.f. What is the diagonal mass matrix of the element?
The mass matrix corresponding to a two-noded bar element will be a 6x6 matrix, the three directions each
node. Remembering that the terms on the diagonal Mii refer to the uniaxial displacements and the terms Mij

for i 6= j refer to rotations. If the nodes are allowed to have only translational degree of freedom, the resultant
mass matrix will have only the terms on the diagonal Mii = (ρAL/2).
Explicitly the mass matrix is:

M =
ρLA

2


1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 (6.1)
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