Assignment 5

PRADEEP KUMAR BAL

March 10, 2018

Problem 5.1

We are given a three-nodded bar element which is referred to the natural coordinate ξ . The two end nodes and the mid node are identified as 1, 2 and 3 respectively. The natural coordinates of nodes 1, 2 and 3 are $\xi = -1, \xi = 1$ and $\xi = 0$, respectively. The variation of the shape functions $N_1(\xi)$, $N_2(\xi)$ and $N_3(\xi)$ is sketched in the figure below. The given shape functions are the quadratic polynomials in ξ : $N_1^{\text{e}}(\xi) = a_0 + a_1 \xi + a_2 \xi^2$, $N_2^{\text{e}}(\xi) = b_0 + b_1 \xi + b_2 \xi^2$ and $N_3^{\text{e}}(\xi) = c_0 + c_1 \xi + c_2 \xi^2$.

(a) For the shape function $N_1^{\text{e}}(\xi)$, using the node value conditions, $N_1^{\text{e}}(\xi = -1) = 1, N_1^{\text{e}}(\xi = 0) = 0 \text{ and } N_1^{\text{e}}(\xi = 1) = 0.$

So we can write At $\xi = -1$; $a_0 - a_1 + a_2 = 1;$ At $\xi = 0$; $a_0 = 0;$ At $\xi = 1;$ $a_0 + a_1 + a_2 = 0$

On solving the above three equations: $a_0 = 0; a_1 = -1/2; a_2 = 1/2;$ $N_1^e(\xi) = \frac{\xi(\xi-1)}{2}$

Similarly; for $N_2^e(\xi)$, $N_2^e(\xi = -1) = 0$; $N_2^e(\xi = 0) = 0$; $N_2^e(\xi = 1) = 1$;

We can write: $b_0 - b_1 + b_2 = 0$ $b_0 = 0;$ $b_0 + b_1 + b_2 = 1$ On solving these three above equations we get $b_0 = 0; b_1 = b_2 = 1/2;$

$$
N_2{}^e(\xi) = \frac{\xi(\xi+1)}{2}
$$

Figure 1: Isoparametric shape functions for 3-node bar element

For
$$
N_3^e(\xi)
$$
,
\n $N_3^e(\xi = -1) = 0; N_3^e(\xi = 0) = 1 N_3^e(\xi = 1) = 0$

So, we can write $c_0 - c_1 + c_2 = 0$ $c_0 = 1;$ $c_0 + c_1 + c_2 = 0$

On solving the above three equations we get $c_0 = 1, c_1 = 0; c_2 = -1;$ $N_3{}^e(\xi) = 1 - \xi^2$

(b) $N_1^e(\xi) + N_2^e(\xi) + N_1^e(\xi) = \frac{\xi(\xi-1)}{2} + \frac{\xi(\xi+1)}{2} + 1 - \xi^2 = 1;$

It verifies that the sum of the three shape functions is 1.

The derivatives of the shape functions with respect to the natural co-ordinates are:

(c)
$$
\frac{d N_1^e}{d\xi} = \frac{d (\frac{\xi - (\xi - 1)}{2})}{d\xi} = \xi - 1/2
$$

$$
\frac{d N_2^e}{d\xi} = \frac{d (\frac{\xi - (\xi + 1)}{2})}{d\xi} = \xi + 1/2
$$

$$
\frac{d N_3^e}{d\xi} = \frac{d (1 - \xi^2)}{d\xi} = -2 \xi
$$

Problem 5.2

A five node quadrilateral element has the nodal configuration shown in the figure below with two perspective views of N_1^e and N_5^e .

In the natural co-ordinates the sides can be represented as shown in the figure below:

Using the line product method $N_5(\xi, \eta)$ can be represented as:

 $N_5(\xi, \eta) = c_5 L_{1-2} L_{2-3} L_{3-4} L_{4-1};$

$$
So, N_5(\xi, \eta) = c_5 (\eta + 1)(\xi + 1)(\eta - 1)(\xi - 1)
$$

But $N_5(\xi = 0, \eta = 0) = 1$

It gives us $c_5 = 1$; So,

$$
N_5(\xi, \eta) = (\eta + 1)(\xi + 1)(\eta - 1)(\xi - 1) = (\xi^2 - 1) (\eta^2 - 1)
$$

We know that the corner shape functions for a four nodded quadrilateral element are:

$$
\begin{aligned} \underline{N_1} &= \frac{(1-\xi)(1-\eta)}{4} \\ \underline{N_2} &= \frac{(1+\xi)(1-\eta)}{4} \\ \underline{N_3} &= \frac{(1+\xi)(1+\eta)}{4} \\ \underline{N_4} &= \frac{(1-\xi)(1+\eta)}{4} \end{aligned}
$$

For $i = 1, 2, 3, 4$ for the given 5 nodded quadrilateral element it is assumed that :

$$
N_i = \underline{N_i} + \alpha N_5 \text{ and } N_i(\xi = 0, \eta = 0) = 0 \text{ at the node } 5
$$

For $i = 1$; $N_1 = \underline{N_1} + \alpha N_5$

$$
N_1 = \frac{(1-\xi)(1-\eta)}{4} + \alpha(\eta^2 - 1) (\xi^2 - 1);
$$

Implementing $N_1(\xi = 0, \eta = 0) = 0$; we have $\alpha = -1/4$

So,

$$
N_1 = \frac{(1-\xi)(1-\eta)}{4} - \frac{(\eta^2 - 1)(\xi^2 - 1)}{4};
$$

$$
N_1(\xi, \eta) = -\frac{(1-\xi)(1-\eta)(\xi + \eta + \xi \eta)}{4}
$$

For $i = 2; N_2 = N_2 + \alpha N_5$ $N_2 = \frac{(1+\xi)(1-\eta)}{4} + \alpha(\eta^2 - 1) (\xi^2 - 1);$

Implementing $N_2(\xi = 0, \eta = 0) = 0$; we have $\alpha = -1/4$

So,

$$
N_2 = \frac{(1+\xi)(1-\eta)}{4} - \frac{(\eta^2 - 1)(\xi^2 - 1)}{4};
$$

\n
$$
N_2(\xi, \eta) = \frac{(1+\xi)(1-\eta)(-\eta+\xi+\xi\eta)}{4}
$$

\n**For** $i = 3; N_3 = N_3 + \alpha N_5$
\n
$$
N_3 = \frac{(1+\xi)(1+\eta)}{4} + \alpha(\eta^2 - 1)(\xi^2 - 1);
$$

Implementing $N_3(\xi = 0, \eta = 0) = 0$; wehave $\alpha = -1/4$

So,
\n
$$
N_3 = \frac{(1+\xi)(1+\eta)}{4} - \frac{(\eta^2-1)(\xi^2-1)}{4};
$$
\n
$$
N_3(\xi, \eta) = \frac{(1+\xi)(1+\eta)(\xi+\eta-\xi\eta)}{4}
$$
\nFor $i = 4$;
$$
N_4 = \frac{N_4}{4} + \alpha N_5
$$
\n
$$
N_4 = \frac{(1-\xi)(1+\eta)}{4} + \alpha(\eta^2 - 1)(\xi^2 - 1);
$$

Implementing $N_4(\xi = 0, \eta = 0) = 0$; we have $\alpha = -1/4$

So,
\n
$$
N_4 = \frac{(1-\xi)(1+\eta)}{4} - \frac{(\eta^2 - 1)(\xi^2 - 1)}{4};
$$
\n
$$
N_4(\xi, \eta) = \frac{(1-\xi)(1+\eta)(\eta - \xi + \xi \eta)}{4}
$$

$$
N_1(\xi, \eta) + N_2(\xi, \eta) + N_3(\xi, \eta) + N_4(\xi, \eta) + N_5(\xi, \eta)
$$

= $\frac{(1-\xi)(1-\eta)}{4} - \frac{(\eta^2-1)(\xi^2-1)}{4} + \frac{(1+\xi)(1-\eta)}{4} - \frac{(\eta^2-1)(\xi^2-1)}{4} + \frac{(1+\xi)(1+\eta)}{4} - \frac{(\eta^2-1)(\xi^2-1)}{4} + \frac{(1-\xi)(1+\eta)}{4} - \frac{(\eta^2-1)(\xi^2-1)}{4} + \frac{(1-\xi)(1+\eta)}{4} - \frac{(\eta^2-1)(\xi^2-1)}{4} + \frac{(\eta^2-1)(\xi^2-1)}{4} + \frac{(\eta^2-1)(\xi^2-1)}{4} - \frac{(\eta^2-1)(\xi^2-1)(\xi^2-1)}{4} - \frac{(\eta^2-1)(\xi^2-1)(\xi^2-1)}{4} - \frac{(\eta^2-1)(\xi^2-1)(\xi^2-1)}{4} - \frac{(\eta^2-1)(\xi^2-1)(\xi^2-1)}{4} - \frac{(\eta^2-1)(\xi^2-1)(\xi^2-1)}{4} - \frac{(\eta^2-1)(\xi^2-1)(\xi^2-1)}{4} - \frac{(\eta^2-1)(\xi^2-1)(\xi^2-1)(\xi^2-1)}{4} - \frac{(\eta^2-1)(\xi^2-1)(\xi^2-1)(\xi^2-1)}{4} - \frac{(\eta^2-1)(\xi^2-1)(\xi^2-1)(\xi^2-1)(\xi^2-1)}{4} - \frac{(\eta^2-1)(\xi^2-1)(\xi^2-1)(\xi^2-1)(\xi^2-1)}{4} - \frac{(\eta^2-1)(\xi^2-1)(\xi^2-1)(\xi^2-1)(\xi^2-1)(\xi^2-1)}{4} - \frac{(\eta^2-1)(\xi^2-1)(\xi^2-1)(\xi^2-1)(\xi^2-1)(\xi^2-1)}{4} - \frac{(\eta^2-1)(\xi^2-1)(\xi^2-1)(\xi^2-1)(\xi^2-1)(\xi^2-1)}{4} - \frac{(\eta^2-1)(\xi^$

So, it verifies that $N_{1} + N_{2} + N_{3} + N_{4} + N_{5} = 1$

Problem 5.3

1. The 8-node hexahedron:

The $2 * 2 * 2$ rules since, $2^3 * 6 = 48 > 8 * 3 - 6 = 18$ gives a rank sufficient stiffness matrix.

2. The 20-node hexahedron:

The $3 * 3 * 3$ rules since, $3^3 * 6 = 162 > 20 * 3 - 6 = 54$ gives a rank sufficient stiffness matrix.

3. The 27-node hexahedron:

The $3 * 3 * 3$ rules since, $3^3 * 6 = 162 > 27 * 3 - 6 = 75$ gives a rank sufficient stiffness matrix.

4. The 64-node hexahedron:

The $4 * 4 * 4$ rules since, $4^3 * 6 = 384 > 64 * 3 - 6 = 186$ gives a rank sufficient stiffness matrix.