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Exercise 1 

Analyze the following concrete hyperbolic Shell under self-weight. Explain the behavior of all the Stresses 

presented. 

1.1 Building the hyperbolic structure 

Using an Excel sheet it’s been possible to calculate the nodal coordinates of the structure, and knowing the 

extremal four nodal coordinates of the structure it’s been used a linear interpolation. The Excel file has 

been saved as a text file containing only the X,Y,Z coordinates of all the nodes of the structure. Inside the 

GiD geometrical interface it’s imported the nodal infos and using line (firstly) and surface (secondly) tools 

the geometry has been completed. Some of the surfaces that have built automatically presented the 

normal vector oriented “against” the global Z, while others oriented like Z (and this is a wrong scenario for 

the assembly of the global stiffness matrix), so it’s been necessary to rotate the orientation of these 

surfaces. 

 

Figure 1a - GiD model of the structure (seen in 3D space) 

 

Figure 1b - GiD model of the structure (seen in the XY plane from the top) 



1.2 Working on the GiD model 

In the GiD project it’s been used the “MAT-fem_Shells” tool in order to create an input file for a MatLab 

code that implements the Reissner-Mindlin structural model (‘Lamina_T_RM.m’ file).  

Firstly, the boundary conditions and material property have been assigned to the structure. Concerning 

about the B.C., the four sides of the structure have been clamped (using “displacement BC to lines” tool). 

All 5 DOFs of the structured have been fixed to 0. Then concrete material has been assigned to the surfaces 

of the model and the thickness fixed = 0.1 m. It’s been necessary to “switch-on” the possibility to consider 

the self-weight for the calculation.  

 

Figure 2 - Boundary Conditions (seen in the XY plane from the top) 

 

Secondly, structured-type mesh has been created in the structure. The type of the elements is triangular 

and linear, since the MatLab code works with the 3-node triangles. In this case the size of the mesh used is 

of 0.25 meters, since the size of each surface is of 1 meter and, as shown in the graph 1, reaches a good 

convergence (3200 elements and 1681 nodes). 

 

 

Graph 1 - Convergence graph 



 

Figure 3 - Mesh structure (seen in the XY plane from the top) 

 

Pressing on the “Create a MatLab file”, it’s been possible to generate a file that contains all the information 

of the model that need to be used in the MatLab code. 

1.3 Working in the MatLab code 

The MatLab file created by GiD presented one imprecision: the name of the matrix containing the Dirichlet 

BC for the code had different name that the MatLab code didn’t recognize, so a change of name for this 

matrix was necessary. Furthermore, for the last part of the MatLab code there is a Function which creates 

an output file, that the GiD program reads, in order to show the post-process results. It turned out that the 

displacement vector u was shown as a “sparse double” entity, and the MatLab function “fprinf” used many 

times in the Function doesn’t recognize it and gives error. It was necessary to convert this sparse double 

entity into a classical vector. 

1.4 Post-process in GiD 

Once created the “.flavia.msh and .flavia.res” files by the MatLab code both files have been opened inside 

the GiD problem. Now it was possible to show the results of the calculation (displacements and forces). 

 
Figure 4 - Displacements from XY plane (top left - dispX / top right - dispY / bottom - dispZ) 



As it can be seen in the figure 4, the displacement field (in all the directions) shows a symmetric 

distribution. While the z displacements have maximum value on the central core of the structure, as easily 

imagined and expected, the x and y displacements show their maximum values in the middle of each half of 

the structure (in the sense that displacements along x direction follow an halved structure along the x axis, 

while the displacements in y follow the same logic in the other direction). All this results follow the logic 

behind the own-weight loaded problem and the particular shape of the structure. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The figure 5 shows the distribution of the rotations around X and Y axes. As expected and according to the 

shape of the structure, the load problem (self-weight) and the boundary conditions, both fields show a 

symmetric distribution and show the maximum values close to the edges (in the sense that the rotations 

around X are symmetric respect to the Y axis, while the rotations around Y are symmetric respect to the X 

axis). In figure 6 this logic is more underlined and visible. 

 

Figure 6 - Rotations seen from the XY plane (left - rotations around X / right - rotations around Y) 

Figure 5 - Rotations (top - rotations around X seen from YZ plane / bottom - 

rotations Y seen from XZ plane) 



Concerning the forces, it’s possible to see that the membrane problem is more significant than the bending 

and shear problems. 

 

Figure 7 - Membrane forces seen from XY plane (top-left - Tx forces / top-right - Ty forces / bottom - Txy forces) 

As shown in the figure 7, all three membrane forces (X, Y and XY) show a symmetric behavior. Due to the 

shape of the structure and the boundary conditions, the biggest values of Tx and Ty are close to the edges 

in positive and negative sign, changing very fast the value between these two extremes (for Tx = +1.498 e 

+05 / -1.566 e + 05 and Ty = +1.4019 e +05 and -1.3411 e +05). The Txy forces, instead, show a double 

symmetrical behavior (along both x and y axes), presenting the biggest value in the middle, where we have 

the area of change in shape and curvature of the structure and the value of 0 at the corners. This maximum 

value for Txy is 1.738 e +05. 

 

Figure 8 - Bending moments seen from the XY plane (top-left - Mx / top-right - My / bottom Mxy) 



The bending moments show the same symmetrical logical behavior of the membrane forces, but present 

the biggest values of the moment exactly at the boundary edges of the structure (Mx = 3304.9 while My = 

3311). *This is due to the fact that the structure is fixed in both directions so we can see it like a crossing 

beams frame. The not perfect symmetrical behavior is due to the shape of the structure that doesn’t have 

the same geometric curvature everywhere. This quasi-symmetric behavior is confirmed in the torsional 

moment Mxy plot, that shows again two directions of symmetry, which are along the diagonals of the 

structure. The significant values of Mxy in the corners of the this model is due to the torsional effect that 

the gravity creates into this particularly shaped structure (Mxy = +756 / Mxy = -659).  

For the same reasons described for the bending moments distribution (*), it’s possible to see in figure 9 

that the shear forces show a symmetric behavior: as expected, it shows opposite big values at the edges of 

the structure following the same logic described before. ( Qx = +1.1249 e +05 / Qx = -1.1236 e +05 and Qy = 

+1.1259 e+05 / Qy = -1.1037 e+05). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9 - Shear forces seen from the XY plane (left - Qx / right - Qy) 



 

 

 

 

 

 

 


